I would like to get the not NaN values of each row and also to keep it as NaN if that row has only NaNs.
DF =
| a | b | c | 
|---|---|---|
| NaN | NaN | ghi | 
| NaN | def | NaN | 
| NaN | NaN | NaN | 
| abc | NaN | NaN | 
| NaN | NaN | NaN | 
The result should be like this:
| Result | 
|---|
| ghi | 
| def | 
| NaN | 
| abc | 
| NaN | 
I would like to get the not NaN values of each row and also to keep it as NaN if that row has only NaNs.
DF =
| a | b | c | 
|---|---|---|
| NaN | NaN | ghi | 
| NaN | def | NaN | 
| NaN | NaN | NaN | 
| abc | NaN | NaN | 
| NaN | NaN | NaN | 
The result should be like this:
| Result | 
|---|
| ghi | 
| def | 
| NaN | 
| abc | 
| NaN | 
 
    
    Hi there are many different solutions for this. Here is mine
import pandas as pd
data = {'a': ['NaN', 'NaN', 'NaN', 'abc', 'NaN'],
        'b': ['NaN', 'def', 'NaN', 'NaN', 'NaN'],
        'c': ['ghi', 'NaN', 'NaN', 'NaN', 'NaN']}
df = pd.DataFrame(data)
ls = []
for idx, row in df.iterrows():
    if any(x != "NaN" for x in row.unique()): # checking if there is any element which doesnt match "NaN" in the row
        mismatch = next((x for x in row.unique() if x != "NaN"), None) # if there is a mismatch get that element which mismatch "NaN"
        ls.append(mismatch)
    else:
        ls.append("NaN")
final_df = pd.DataFrame({
    "result":ls
})
>>> print(final_df)
result
0   ghi
1   def
2   NaN
3   abc
4   NaN
