I am trying to split a dataframe using json_normalize and pd.concat
df = pd.DataFrame({
    'ROW1': ['TC', 'OD', 'GN', 'OLT'],
    'D2': [1680880134, 4, 0, [{'ID': '5771841270', 'SLX': [{'T1': '1', 'T2': '1729494797', 
                                                                   },
                                                                     {'T1': '1', 'T2': '1729445', 
                                                                      }]}]]
})
print(df)
df_transposed = df.set_index('ROW1').transpose()
df_flattened = pd.json_normalize(df_transposed['OLT'][0], 'SLX', ['ID'])
final_df = pd.concat([df_transposed.drop('OLT', axis=1), df_flattened], axis=1)
print(final_df)
I am getting all Nans here
            TC   OD   GN   T1          T2          ID
D2  1680880134    4    0  NaN         NaN         NaN
0          NaN  NaN  NaN    1  1729494797  5771841270
1          NaN  NaN  NaN    1     1729445  5771841270
Expected output
TC   OD   GN   T1          T2          ID
D2  1680880134    4    0  1  1729494797  5771841270
D2  1680880134    4    0  1     1729445  5771841270
 
    