I have a Pandas database Network with a network structure like this:
{'Sup': {0: 1002000157,
  1: 1002000157,
  2: 1002000157,
  3: 1002000157,
  4: 1002000157,
  5: 1002000157,
  6: 1002000157,
  7: 1002000157,
  8: 1002000157,
  9: 1002000157,
  10: 1002000157,
  11: 1002000157,
  12: 1002000157,
  13: 1002000382,
  14: 1002000382,
  15: 1002000382,
  16: 1002000382,
  17: 1002000382,
  18: 1002000382,
  19: 1002000382,
  20: 1002000382,
  21: 1002000382,
  22: 1002000382,
  23: 1002000382,
  24: 1002000382,
  25: 1002000382,
  26: 1002000382,
  27: 1002000382,
  28: 1002000382,
  29: 1002000382},
 'Cust': {0: 1002438313,
  1: 8039296054,
  2: 9003188096,
  3: 14900070991,
  4: 17005234747,
  5: 18006860724,
  6: 28000286091,
  7: 29009623382,
  8: 39000007702,
  9: 39004420023,
  10: 46000088397,
  11: 50000063751,
  12: 7000090017,
  13: 1900120936,
  14: 1900779883,
  15: 2000013994,
  16: 2001222824,
  17: 2003032125,
  18: 2900121723,
  19: 2900197555,
  20: 2902742641,
  21: 3000101113,
  22: 3000195031,
  23: 3000318054,
  24: 3900091301,
  25: 3911084436,
  26: 4900112325,
  27: 5900720933,
  28: 7000001703,
  29: 8000004881}}
I would like to reproduce this R command (possibly without kernel interrupting) in Python:
NodesSharingSupplier <- inner_join(Network, Network,  by=c('Sup'='Sup'))
This is an SQL-style inner join, thus I fear that it cannot be performed simply with an inner merge on Sup in Python.
How do I reproduce it in Python?
 
     
     
    