let us suppose that we have following table :
      Kakheti      Tbilisi  Shida Kartli  Kvemo Kartli Samtskhe-Javakheti  \
1    447.773080   695.168755    575.344860    492.989720                  …   
2    368.175479   680.922659    449.687764    428.683988                  …   
3     94.253356   381.434387    147.149448    219.399642                  …   
4     38.283124    77.261457     39.516685     29.104063                  …   
5     71.281052     0.720206     74.027796     49.294079                  …   
6      1.463107    15.452695      2.457914      0.000000                  …   
as you see one column contains ... symbol, i have tried following code :
import pandas as pd
data =pd.read_excel("https://geostat.ge/media/45425/106_Distribution-of-average-monthly-incomes-per-household-by-regions.xls",
                    skiprows=[0])
data.drop(["Unnamed: 0","Other regions**","Georgia"],axis=1,inplace=True)
data.dropna(axis=0,how='all',inplace=True)
data.dropna(axis=1,how='all',inplace=True)
for column in data.columns:
    if data[column].dtype=="object":
        data[column] =data[column].str.strip()
data = data[data.columns.drop(list(data.filter(regex='…')))]
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', 165)
print(data.head(100))
special attention is dedicated to given line
data = data[data.columns.drop(list(data.filter(regex='…')))]
dropna also does not work,so what might be optimal variant?
Edited: come on guys(whoever closed this question) , it is not about display all columns, it is about showing specific columns, here is what i found :
data =data._get_numeric_data()
result is :
    Kakheti      Tbilisi  Shida Kartli  Kvemo Kartli  Adjara A.R.  \
1    447.773080   695.168755    575.344860    492.989720   656.011810   
2    368.175479   680.922659    449.687764    428.683988   576.822184   
3     94.253356   381.434387    147.149448    219.399642   289.083094   
4     38.283124    77.261457     39.516685     29.104063   112.680109   
5     71.281052     0.720206     74.027796     49.294079    17.850210   
6      1.463107    15.452695      2.457914      0.000000     4.489037   
