After watching Samson Zhang's video and 3blue1brown I tried to write the NN from scratch. (The code is heavily referenced from Samson's, but did go through the whole derivation of how he got the formula) I wrote down the equations and derivation to make sure I fully understand how it worked. But when I run the model, accuracy starts going down at around 17% and seems to all verge on 1 number and when they do I also get error messages.
RuntimeWarning: overflow encountered in exp a2=np.exp(z)/sum(np.exp(z))
RuntimeWarning: invalid value encountered in divide a2=np.exp(z)/sum(np.exp(z))
The dimensions for each input, node, weights, biases are as below.
a0(input) = m x 784
w1 = 784 x 20
b1 = 1 x 20
a1 = m x 20
w2 = 20 x 10
b2 = 1 x 10
a2(output) = m x 10
y(one_hot_encoded) = m x 10
I have tried changing the learning rate(alpha) to a smaller number, but they all lead to the same error in the end.
import numpy as np 
import pandas as pd
m, n = data.shape
x_train=data[0:m,1:785]
y_train=data[0:m,0]
x_train=x_train/255
def init_param():
    w1=np.random.rand(784,20)-0.5
    b1=np.random.rand(1,20)-0.5
    w2=np.random.rand(20,10)-0.5
    b2=np.random.rand(1,10)-0.5
    
    return w1, b1, w2, b2
def ReLU(z):
    return np.maximum(z,0)
def Softmax(z):
    a2=np.exp(z)/sum(np.exp(z))
    return a2
def f_propagation(a0,w1,b1,w2,b2):
    z1 = a0.dot(w1)+b1 # m x 20
    a1 = ReLU(z1)         # m x 20
    z2 = a1.dot(w2)+b2 # m x 10
    a2 = Softmax(z2)      # m x 10 
    return z1, a1, z2, a2
def dev_ReLU(z):
    return z>0
def one_hotencode(y):
    y_hat=np.zeros((np.size(y),10))
    y_hat[np.arange(y.size),y] = 1
    return y_hat
def b_propagation(x,y,z1,w1,a1,z2,w2,a2):
    y_hat = one_hotencode(y)
    dadc = a2 - y_hat # m x 10 Start from here
    dw2 = 1/m * (a1.T.dot(dadc)) #20 x 10
    db2 = 1/m * np.sum(dadc,axis=0) #1 x 10
    dw1 = 1/m * x.T.dot((w2.dot(dadc.T).T * dev_ReLU(z1))) # 784 x 20
    db1 = 1/m * np.sum((w2.dot(dadc.T).T * dev_ReLU(z1)),axis=0) #1 x 20
    return dw2, db2, dw1, db1
def update_param(w1, b1, w2, b2, dw1, db1, dw2, db2, alpha):
    w1 = w1 - alpha * dw1
    b1 = b1 - alpha * db1
    w2 = w2 - alpha * dw2
    b2 = b2 - alpha * db2 
    return w1, b1, w2, b2
def get_predictions(A2):
    return np.argmax(A2, 0)
def get_accuracy(predictions, Y):
    print(predictions, Y)
    return np.sum(predictions == Y) / Y.size
def gradient_descent(x, y, alpha=0.01, iterations=500):
    w1, b1, w2, b2 = init_param()
    for i in range(iterations):
        z1, a1, z2, a2 = f_propagation(x,w1,b1,w2,b2)
        dw2, db2, dw1, db1 = b_propagation(x,y,z1,w1,a1,z2,w2,a2)
        w1, b1, w2, b2 = update_param(w1, b1, w2, b2, dw1, db1, dw2, db2, alpha)
        if i % 10 == 0:
            print("Iteration: ", i)
            predictions = get_predictions(a2.T)
            print(get_accuracy(predictions, y))
        
    return w1, b1, w2, b2
w1, b1, w2, b2 = gradient_descent(x_train, y_train, 0.01, 500)
    
Results:
Iteration:  0
[5 0 2 ... 1 7 3] [4 3 7 ... 8 1 1]
0.08547619047619047
Iteration:  10
[5 7 2 ... 1 3 3] [4 3 7 ... 8 1 1]
0.09669047619047619
Iteration:  20
[5 7 7 ... 1 3 3] [4 3 7 ... 8 1 1]
0.10857142857142857
Iteration:  30
[5 7 7 ... 1 3 3] [4 3 7 ... 8 1 1]
0.11978571428571429
Iteration:  40
[5 7 7 ... 1 3 3] [4 3 7 ... 8 1 1]
0.12797619047619047
Iteration:  50
[5 7 7 ... 1 3 3] [4 3 7 ... 8 1 1]
0.13035714285714287
Iteration:  60
[5 7 7 ... 1 3 3] [4 3 7 ... 8 1 1]
0.12047619047619047
Iteration:  70
[5 1 1 ... 1 3 3] [4 3 7 ... 8 1 1]
0.09740476190476191
Iteration:  80
[3 1 1 ... 1 3 3] [4 3 7 ... 8 1 1]
0.0975952380952381
Iteration:  90
[3 1 1 ... 1 3 3] [4 3 7 ... 8 1 1]
0.11626190476190476
Iteration:  100
[1 1 1 ... 1 1 1] [4 3 7 ... 8 1 1]
0.12088095238095238
Iteration:  110
[1 1 1 ... 1 1 1] [4 3 7 ... 8 1 1]
0.112
Iteration:  120
[1 1 1 ... 1 1 1] [4 3 7 ... 8 1 1]
0.11152380952380953
Iteration:  130
[1 1 1 ... 1 1 1] [4 3 7 ... 8 1 1]
0.11152380952380953
Iteration:  140
[1 1 1 ... 1 1 1] [4 3 7 ... 8 1 1]
0.11152380952380953
/tmp/ipykernel_29/2242731165.py:13: RuntimeWarning: overflow encountered in exp
  a2=np.exp(z)/sum(np.exp(z))
/tmp/ipykernel_29/2242731165.py:13: RuntimeWarning: invalid value encountered in divide
  a2=np.exp(z)/sum(np.exp(z))
 
    