There are various available examples with a formula for a 2D Gaussian Blob and drawing it via Pyplot, for example:
How to generate 2D gaussian with Python?
 and
 How to plot a 2d gaussian with different sigma?
I'm attempting to change this over to OpenCV (in Python).
Some requirements are:
-ability to specify different height and width for the blob, i.e. ability to make the blob an ellipse (not always a circle)
-ability to specify the center point of the blob in the original image
-the value at the exact center of the blob should be 255, and the values should work their way down to 0 towards the edge of the blob
-rotation is not necessary
The final image (depending on settings of course) should look something like this:

In the context of CenterNet (which is my use case for this) the result (image with a Gaussian blob on it) is called a "Heatmap" so that's the term I'm going to use in code for the image.
Here is what I have so far:
import numpy as np
import cv2
def main():
    # suppress numpy printing in scientific notation
    np.set_printoptions(suppress=True)
    hm_width = 1600
    hm_height = 1000
    # create blank heatmap (OpenCV image)
    heatmap = np.zeros((hm_height, hm_width), dtype=np.uint8)
    blob_height = 100
    blob_width = 300
    blob_center_x = 1000
    blob_center_y = 400
    # Create a 2D Gaussian blob
    x, y = np.meshgrid(np.linspace(0, 1, blob_width), np.linspace(0, 1, blob_height))
    print('\n' + 'x: ')
    print(x.dtype)
    print(x.shape)
    print('min = ' + str(np.min(x)) + ' (s/b 0.0)')
    print('max = ' + str(np.max(x)) + ' (s/b 1.0)')
    print(x)
    print('\n' + 'y: ')
    print(y.dtype)
    print(y.shape)
    print('min = ' + str(np.min(y)) + ' (s/b 0.0)')
    print('max = ' + str(np.max(y)) + ' (s/b 1.0)')
    print(y)
    # gaussian_blob = 1.0 / (2.0 * np.pi * blob_width * blob_height) * np.exp(-((x - blob_center_x)**2.0 / (2. * blob_width**2.0) + (y - blob_center_y)**2.0 / (2. * blob_height**2.0)))
    gaussian_x_term = np.power(x - blob_center_x, 2.0) / np.power(blob_width, 2.0)
    gaussian_y_term = np.power(y - blob_center_y, 2.0) / np.power(blob_height, 2.0)
    gaussian_blob = np.exp(-1.0 * (gaussian_x_term + gaussian_y_term))
    print('\n' + 'gaussian_blob before: ')
    print(gaussian_blob.dtype)
    print(gaussian_blob.shape)
    print('min = ' + str(np.min(gaussian_blob)) + ' (s/b 0.0)')
    print('max = ' + str(np.max(gaussian_blob)) + ' (s/b 1.0)')
    print(gaussian_blob)
    # scale up the gaussian blob from the 0.0 to 1.0 range to the 0 to 255 range
    gaussian_blob = gaussian_blob * 255.0
    gaussian_blob = np.clip(gaussian_blob, a_min=0.0, a_max=255.0)
    gaussian_blob = np.rint(gaussian_blob)
    gaussian_blob = np.clip(gaussian_blob, a_min=0, a_max=255)
    gaussian_blob = gaussian_blob.astype(np.uint8)
    print('\n' + 'gaussian_blob after: ')
    print(gaussian_blob.dtype)
    print(gaussian_blob.shape)
    print('min = ' + str(np.min(gaussian_blob)) + ' (s/b 0)')
    print('max = ' + str(np.max(gaussian_blob)) + ' (s/b 255)')
    print(gaussian_blob)
    # show the blob via OpenCV
    cv2.imshow('gaussian blob', gaussian_blob)
    
    # add the gaussian blob image to the heatmap
    blob_left_edge_loc = round(blob_center_x - (0.5 * blob_width))
    blob_right_edge_loc = round(blob_center_x + (0.5 * blob_width))
    blob_top_edge_loc = round(blob_center_y - (0.5 * blob_height))
    blob_bottom_edge_loc = round(blob_center_y + (0.5 * blob_height))
    heatmap[blob_top_edge_loc:blob_bottom_edge_loc, blob_left_edge_loc:blob_right_edge_loc] = gaussian_blob
    # show the heatmap
    cv2.imshow('heatmap', heatmap)
    cv2.waitKey()
# end function
if __name__ == '__main__':
    main()
Currently both images come out almost blank, and based on the output:
x: 
float64
(100, 300)
min = 0.0 (s/b 0.0)
max = 1.0 (s/b 1.0)
[[0.         0.00334448 0.00668896 ... 0.99331104 0.99665552 1.        ]
 [0.         0.00334448 0.00668896 ... 0.99331104 0.99665552 1.        ]
 [0.         0.00334448 0.00668896 ... 0.99331104 0.99665552 1.        ]
 ...
 [0.         0.00334448 0.00668896 ... 0.99331104 0.99665552 1.        ]
 [0.         0.00334448 0.00668896 ... 0.99331104 0.99665552 1.        ]
 [0.         0.00334448 0.00668896 ... 0.99331104 0.99665552 1.        ]]
y: 
float64
(100, 300)
min = 0.0 (s/b 0.0)
max = 1.0 (s/b 1.0)
[[0.         0.         0.         ... 0.         0.         0.        ]
 [0.01010101 0.01010101 0.01010101 ... 0.01010101 0.01010101 0.01010101]
 [0.02020202 0.02020202 0.02020202 ... 0.02020202 0.02020202 0.02020202]
 ...
 [0.97979798 0.97979798 0.97979798 ... 0.97979798 0.97979798 0.97979798]
 [0.98989899 0.98989899 0.98989899 ... 0.98989899 0.98989899 0.98989899]
 [1.         1.         1.         ... 1.         1.         1.        ]]
gaussian_blob before: 
float64
(100, 300)
min = 6.880118208869318e-12 (s/b 0.0)
max = 7.240508138966562e-12 (s/b 1.0)
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]
gaussian_blob after: 
uint8
(100, 300)
min = 0 (s/b 0)
max = 0 (s/b 255)
[[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]]
it seems I'm not calculating the Gaussian blob quite right, but I'm not sure how to resolve this. Suggestions?
