Sample of my existing script:
# import python libraries
import pandas as pd
# declare file name as 'infileName' & 'outfileName'
infileName="FFH069.3-W02_dielist.csv"
outfileName="Import_FFH069.3-W02_dielist.csv"
# load the data
data = pd.read_csv(infileName)
# convert to a DataFrame
df = pd.DataFrame(data)
# remove unneeded columns
df.drop(columns=["x_center","y_center","x_extent","y_extent"], axis=1, inplace=True)
# rename the infilename columns to match Object Attributes
df.rename(columns={'layout_id':'Design'}, inplace = True)
# insert new columns to match the Object Attributes
df.insert(0,"Wafer + Die ID", "FFH069.3-W02-")
df.insert(1,"Chip Preference", "Primary")
# print the infileName head to validate changes
print(df.head())
  Wafer + Die ID Chip Preference             Design  x_die y_die
0  FFH069.3-W02-         Primary  DS-CHR-0009-01-01      2     0
1  FFH069.3-W02-         Primary  DS-CHR-0008-01-02      3     0
2  FFH069.3-W02-         Primary  DS-CHR-0009-01-01      4     0
3  FFH069.3-W02-         Primary      DS-TLS-001-D6      5     0
4  FFH069.3-W02-         Primary  DS-CHR-0008-01-02      1     1
I have made attempts using the concat function to combine
'Wafer + Die ID' + 'x_die' + '.' + 'y_die' 
and read through other options, but am not sure which is best served, nor how to implement.
Desired Output:
     Wafer + Die ID Chip Preference             Design  x_die y_die
0  FFH069.3-W02-2.0         Primary  DS-CHR-0009-01-01      2     0
1  FFH069.3-W02-3.0         Primary  DS-CHR-0008-01-02      3     0
2  FFH069.3-W02-4.0         Primary  DS-CHR-0009-01-01      4     0
3  FFH069.3-W02-5.0         Primary      DS-TLS-001-D6      5     0
4  FFH069.3-W02-1.1         Primary  DS-CHR-0008-01-02      1     1
 
    