Is it possible to pd.merge() a df and csv when the df column is a list (could be more than one variable) and the csv only one.
df
   GV2015_VAL                               polName
0    605000.0                           [LENTEGEUR]
1         NaN                         [DURBANVILLE]
2         NaN                         [DURBANVILLE]
3    730000.0  [BISHOP LAVIS, GUGULETHU, MANENBERG]
4    625000.0                           [LENTEGEUR]
csv
       name                   m                    p         j
0        LENTEGEUR                17.0                501.0     518.0
1      DURBANVILLE                10.0                495.0     505.0
2           BELHAR                 9.0                352.0     361.0
3        MANENBERG                29.0               1013.0    1042.0
4        GUGULETHU                 1.0                192.0     193.0
5     BISHOP LAVIS                10.0                495.0     505.0
name will match with polName.
Furthermore; the j parameter of csv should .aggregate (mean) when more than one variable present. So that the output for df should be:
df
   GV2015_VAL                               polName   merge_j
0    605000.0                           [LENTEGEUR]     518.0
1         NaN                         [DURBANVILLE]     505.0
2         NaN                         [DURBANVILLE]     505.0
3    730000.0  [BISHOP LAVIS, GUGULETHU, MANENBERG]     580.0    
4    625000.0                           [LENTEGEUR]     518.0
How can the built-in .merge() handle the challenge or will looping / list comprehension be necessary?
 
    