In the software I'm writing, I'm doing millions of multiplication or division by 2 (or powers of 2) of my values. I would really like these values to be int so that I could access the bitshift operators 
int a = 1;
int b = a<<24
However, I cannot, and I have to stick with doubles.
My question is : as there is a standard representation of doubles (sign, exponent, mantissa), is there a way to play with the exponent to get fast multiplications/divisions by a power of 2?
I can even assume that the number of bits is going to be fixed (the software will work on machines that will always have 64 bits long doubles)
P.S : And yes, the algorithm mostly does these operations only. This is the bottleneck (it's already multithreaded).
Edit : Or am I completely mistaken and clever compilers already optimize things for me?
Temporary results (with Qt to measure time, overkill, but I don't care):
#include <QtCore/QCoreApplication>
#include <QtCore/QElapsedTimer>
#include <QtCore/QDebug>
#include <iostream>
#include <math.h>
using namespace std;
int main(int argc, char *argv[])
{
QCoreApplication a(argc, argv);
while(true)
{
    QElapsedTimer timer;
    timer.start();
    int n=100000000;
    volatile double d=12.4;
    volatile double D;
    for(unsigned int i=0; i<n; ++i)
    {
        //D = d*32;      // 200 ms
        //D = d*(1<<5);  // 200 ms
        D = ldexp (d,5); // 6000 ms
    }
    qDebug() << "The operation took" << timer.elapsed() << "milliseconds";
}
return a.exec();
}
Runs suggest that D = d*(1<<5); and D = d*32; run in the same time (200 ms) whereas D = ldexp (d,5); is much slower (6000 ms). I know that this is a micro benchmark, and that suddenly, my RAM has exploded because Chrome has suddenly asked to compute Pi in my back every single time I run ldexp(), so this benchmark is worth nothing. But I'll keep it nevertheless.
On the other had, I'm having trouble doing reinterpret_cast<uint64_t *> because there's a const violation (seems the volatile keyword interferes)