//Allocate memory for a 10-element integer array.
int array[10];
int *p = (int *)malloc( sizeof(array) );
At this point you have allocated twice as much memory -- space for ten integers in the array allocated on the stack, and space for ten integers allocated on the heap. In a "real" program that needed to allocate space for ten integers and stack allocation wasn't the right thing to do, the allocation would be done like this:
int *p = malloc(10 * sizeof(int));
Note that there is no need to cast the return value from malloc(3). I expect you forgot to include the <stdlib> header, which would have properly prototyped the function, and given you the correct output. (Without the prototype in the header, the C compiler assumes the function would return an int, and the cast makes it treat it as a pointer instead. The cast hasn't been necessary for twenty years.)
Furthermore, be vary wary of learning the habit sizeof(array). This will work in code where the array is allocated in the same block as the sizeof() keyword, but it will fail when used like this:
int foo(char bar[]) {
int length = sizeof(bar); /* BUG */
}
It'll look correct, but sizeof() will in fact see an char * instead of the full array. C's new Variable Length Array support is keen, but not to be mistaken with the arrays that know their size available in many other langauges.
//Fill each element with the value of 5.
int i = 0;
printf("Size of array: %d\n", sizeof(array));
while (i < sizeof(array)){
*p = 5;
*p += sizeof(int);
Aha! Someone else who has the same trouble with C pointers that I did! I presume you used to write mostly assembly code and had to increment your pointers yourself? :) The compiler knows the type of objects that p points to (int *p), so it'll properly move the pointer by the correct number of bytes if you just write p++. If you swap your code to using long or long long or float or double or long double or struct very_long_integers, the compiler will always do the right thing with p++.
i += sizeof(int);
}
While that's not wrong, it would certainly be more idiomatic to re-write the last loop a little:
for (i=0; i<array_length; i++)
p[i] = 5;
Of course, you'll have to store the array length into a variable or #define it, but it's easier to do this than rely on a sometimes-finicky calculation of the array length.
Update
After reading the other (excellent) answers, I realize I forgot to mention that since p is your only reference to the array, it'd be best to not update p without storing a copy of its value somewhere. My little 'idiomatic' rewrite side-steps the issue but doesn't point out why using subscription is more idiomatic than incrementing the pointer -- and this is one reason why the subscription is preferred. I also prefer the subscription because it is often far easier to reason about code where the base of an array doesn't change. (It Depends.)