They are correct, it is undefined behaviour. You're not allowed to modify the value of a const variable, which is the danger of casting away the constness of something: you better know it's not really const.
The compiler, seeing that maxint is const and should never be modified, doesn't even have to give it an address. It can just replace all the uses of maxint with 100 if it sees fit. Also it might just put the constant in to a portion of memory that is read-only, as Matteo Italia points out, which is probably what's happening for you. That's why modifying it produces undefined behaviour.
The only way you can safely cast away the constness of a variable is if the variable is not actually const, but the const qualifier was added to a non-const variable, like this:
int f(const int& x) {
int& nonconst = const_cast<int&>(x);
++nonconst;
}
int blah = 523;
f(blah); // this is safe
const int constblah = 123;
f(constblah); // this is undefined behaviour
Think about this example, which compiles perfectly:
int f(const int& x) {
int& nonconst = const_cast<int&>(x);
++nonconst;
}
int main() {
f(4); // incrementing a number literal???
}
You can see how using const_cast is pretty dangerous because there's no way to actually tell whether a variable is originally const or not. You should avoid using const_cast when possible (with functions, by just not accepting const parameters).