The standard trick for computing a^p modulo m is to use successive square. The idea is to expand p into binary, say
p = e0 * 2^0 + e1 * 2^1 + ... + en * 2^n
where (e0,e1,...,en) are binary (0 or 1) and en = 1. Then use laws of exponents to get the following expansion for a^p
a^p = a^( e0 * 2^0 + e1 * 2^1 + ... + en * 2^n )
= a^(e0 * 2^0) * a^(e1 * 2^1) * ... * a^(en * 2^n)
= (a^(2^0))^e0 * (a^(2^1))^e1 * ... * (a^(2^n))^en
Remember that each ei is either 0 or 1, so these just tell you which numbers to take. So the only computations that you need are
a, a^2, a^4, a^8, ..., a^(2^n)
You can generate this sequence by squaring the previous term. Since you want to compute the answer mod m, you should do the modular arithmetic first. This means you want to compute the following
A0 = a mod m
Ai = (Ai)^2 mod m for i>1
The answer is then
a^p mod m = A0^e0 + A1^e1 + ... + An^en
Therefore the computation takes log(p) squares and calls to mod m.
I'm not certain whether or not there is an analog for factorials, but a good place to start looking would be at Wilson's Theorem. Also, you should put in a test for m <= n, in which case n! mod m = 0.