Recap the question: You have two functions which take a parameter of type T. One takes its parameter as a template parameter, and the other as a 'normal' parameter.
I'm going to call the two functions funcT and funcN instead of tfunc and func.
You wish to be able to call funcT from funcN. Marking the latter as a constexpr doesn't help.
Any function marked as constexpr must be compilable as if the constexpr wasn't there. constexpr functions are a little schizophrenic. They only graduate to full constant-expressions in certain circumstances.
It would not be possible to implement funcN to run at runtime in a simple way, as it would need to be able to work for all possible values of t. This would require the compiler to instantiate many instances of tfunc, one for each value of t. But you can work around this if you're willing to live with a small subset of T. There is a template-recursion limit of 1024 in g++, so you can easily handle 1024 values of T with this code:
#include<iostream>
#include<functional>
#include<array>
using namespace std;
template <typename T, T t>
constexpr T funcT() {
return t + 10;
}
template<typename T, T u>
constexpr T worker (T t) {
return t==0 ? funcT<T,u>() : worker<T, u+1>(t-1);
}
template<>
constexpr int worker<int,1000> (int ) {
return -1;
}
template <typename T>
constexpr T funcN(T t)
{
return t<1000 ? worker<T,0>(t) : -1;
}
int main()
{
std::cout << funcN(10) << std::endl;
array<int, funcN(10)> a; // to verify that funcN(10) returns a constant-expression
return 0;
}
It uses a function worker which will recursively convert the 'normal' parameter t into a template parameter u, which it then uses to instantiate and execute tfunc<T,u>.
The crucial line is return funcT<T,u>() : worker<T, u+1>(t-1);
This has limitations. If you want to use long, or other integral types, you'll have to add another specialization. Obviously, this code only works for t between 0 and 1000 - the exact upper limit is probably compiler-dependent. Another option might be to use a binary search of sorts, with a different worker function for each power of 2:
template<typename T, T u>
constexpr T worker4096 (T t) {
return t>=4096 ? worker2048<T, u+4096>(t-4096) : worker2048<T, u>(t);
}
I think this will work around the template-recursion-limit, but it will still require a very large number of instantiations and would make compilation very slow, if it works at all.