I have the following data frame
x <- read.table(text = "  id1 id2 val1 val2
1   a   x    1    9
2   a   x    2    4
3   a   y    3    5
4   a   y    4    9
5   b   x    1    7
6   b   y    4    4
7   b   x    3    9
8   b   y    2    8", header = TRUE)
I want to calculate the mean of val1 and val2 grouped by id1 and id2, and simultaneously count the number of rows for each id1-id2 combination. I can perform each calculation separately:
# calculate mean
aggregate(. ~ id1 + id2, data = x, FUN = mean)
# count rows
aggregate(. ~ id1 + id2, data = x, FUN = length)
In order to do both calculations in one call, I tried
do.call("rbind", aggregate(. ~ id1 + id2, data = x, FUN = function(x) data.frame(m = mean(x), n = length(x))))
However, I get a garbled output along with a warning:
#     m   n
# id1 1   2
# id2 1   1
#     1.5 2
#     2   2
#     3.5 2
#     3   2
#     6.5 2
#     8   2
#     7   2
#     6   2
# Warning message:
#   In rbind(id1 = c(1L, 2L, 1L, 2L), id2 = c(1L, 1L, 2L, 2L), val1 = list( :
#   number of columns of result is not a multiple of vector length (arg 1)
I could use the plyr package, but my data set is quite large and plyr is very slow (almost unusable) when the size of the dataset grows.
How can I use aggregate or other functions to perform several calculations in one call?
 
     
     
     
     
     
     
     
     
    