The str accessor that is available to pandas.Series objects of dtype == object is actually an iterable.
Assume a pandas.DataFrame df:
df = pd.DataFrame(dict(col=[*zip('abcdefghij', range(10, 101, 10))]))
df
        col
0   (a, 10)
1   (b, 20)
2   (c, 30)
3   (d, 40)
4   (e, 50)
5   (f, 60)
6   (g, 70)
7   (h, 80)
8   (i, 90)
9  (j, 100)
We can test if it is an iterable:
from collections import Iterable
isinstance(df.col.str, Iterable)
True
We can then assign from it like we do other iterables:
var0, var1 = 'xy'
print(var0, var1)
x y
Simplest solution
So in one line we can assign both columns:
df['a'], df['b'] = df.col.str
df
        col  a    b
0   (a, 10)  a   10
1   (b, 20)  b   20
2   (c, 30)  c   30
3   (d, 40)  d   40
4   (e, 50)  e   50
5   (f, 60)  f   60
6   (g, 70)  g   70
7   (h, 80)  h   80
8   (i, 90)  i   90
9  (j, 100)  j  100
Faster solution
Only slightly more complicated, we can use zip to create a similar iterable:
df['c'], df['d'] = zip(*df.col)
df
        col  a    b  c    d
0   (a, 10)  a   10  a   10
1   (b, 20)  b   20  b   20
2   (c, 30)  c   30  c   30
3   (d, 40)  d   40  d   40
4   (e, 50)  e   50  e   50
5   (f, 60)  f   60  f   60
6   (g, 70)  g   70  g   70
7   (h, 80)  h   80  h   80
8   (i, 90)  i   90  i   90
9  (j, 100)  j  100  j  100
Inline
Meaning, don't mutate existing df.
This works because assign takes keyword arguments where the keywords are the new (or existing) column names and the values will be the values of the new column. You can use a dictionary and unpack it with ** and have it act as the keyword arguments.
So this is a clever way of assigning a new column named 'g' that is the first item in the df.col.str iterable and 'h' that is the second item in the df.col.str iterable:
df.assign(**dict(zip('gh', df.col.str)))
        col  g    h
0   (a, 10)  a   10
1   (b, 20)  b   20
2   (c, 30)  c   30
3   (d, 40)  d   40
4   (e, 50)  e   50
5   (f, 60)  f   60
6   (g, 70)  g   70
7   (h, 80)  h   80
8   (i, 90)  i   90
9  (j, 100)  j  100
My version of the list approach
With modern list comprehension and variable unpacking.
Note: also inline using join
df.join(pd.DataFrame([*df.col], df.index, [*'ef']))
        col  g    h
0   (a, 10)  a   10
1   (b, 20)  b   20
2   (c, 30)  c   30
3   (d, 40)  d   40
4   (e, 50)  e   50
5   (f, 60)  f   60
6   (g, 70)  g   70
7   (h, 80)  h   80
8   (i, 90)  i   90
9  (j, 100)  j  100
The mutating version would be
df[['e', 'f']] = pd.DataFrame([*df.col], df.index)
Naive Time Test
Short DataFrame
Use the one defined above:
%timeit df.assign(**dict(zip('gh', df.col.str)))
%timeit df.assign(**dict(zip('gh', zip(*df.col))))
%timeit df.join(pd.DataFrame([*df.col], df.index, [*'gh']))
1.16 ms ± 21.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
635 µs ± 18.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
795 µs ± 42.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Long DataFrame
10^3 times bigger
df = pd.concat([df] * 1000, ignore_index=True)
%timeit df.assign(**dict(zip('gh', df.col.str)))
%timeit df.assign(**dict(zip('gh', zip(*df.col))))
%timeit df.join(pd.DataFrame([*df.col], df.index, [*'gh']))
11.4 ms ± 1.53 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.1 ms ± 41.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.33 ms ± 35.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)