I have a dataframe:
    Out[78]: 
   contract month year  buys  adjusted_lots    price
0         W     Z    5  Sell             -5   554.85
1         C     Z    5  Sell             -3   424.50
2         C     Z    5  Sell             -2   424.00
3         C     Z    5  Sell             -2   423.75
4         C     Z    5  Sell             -3   423.50
5         C     Z    5  Sell             -2   425.50
6         C     Z    5  Sell             -3   425.25
7         C     Z    5  Sell             -2   426.00
8         C     Z    5  Sell             -2   426.75
9        CC     U    5   Buy              5  3328.00
10       SB     V    5   Buy              5    11.65
11       SB     V    5   Buy              5    11.64
12       SB     V    5   Buy              2    11.60
I need a sum of adjusted_lots , price which is weighted average , of price and adjusted_lots , grouped by all the other columns , ie. grouped by (contract, month , year and buys)
Similar solution on R was achieved by following code, using dplyr, however unable to do the same in pandas.
> newdf = df %>%
  select ( contract , month , year , buys , adjusted_lots , price ) %>%
  group_by( contract , month , year ,  buys) %>%
  summarise(qty = sum( adjusted_lots) , avgpx = weighted.mean(x = price , w = adjusted_lots) , comdty = "Comdty" )
> newdf
Source: local data frame [4 x 6]
  contract month year comdty qty     avgpx
1        C     Z    5 Comdty -19  424.8289
2       CC     U    5 Comdty   5 3328.0000
3       SB     V    5 Comdty  12   11.6375
4        W     Z    5 Comdty  -5  554.8500
is the same possible by groupby or any other solution ?
 
     
     
     
     
     
     
     
     
    