A little background: I was working on some data conversion from C to C# by using a C++/CLI midlayer, and I noticed a peculiarity with the way the debugger shows floats and doubles, depending on which dll the code is executing in (see code and images below). At first I thought it had something to do with managed/unmanaged differences, but then I realized that if I completely left the C# layer out of it and only used unmanaged data types, the same behaviour was exhibited. 
Test Case: To further explore the issue, I created an isolated test case to clearly identify the strange behaviour. I am assuming that anyone who may be testing this code already has a working Solution and dllimport/dllexport/ macros set up. Mine is called DLL_EXPORT. If you need a minimal working header file, let me know. Here the main application is in C and calling a function from a C++/CLI dll. I am using Visual Studio 2015 and both assemblies are 32 bit.
I am a bit concerned, as I am not sure if this is something I need to worry about or it's just something the debugger is doing (I am leaning towards the latter). And to be quite honest, I am just outright curious as to what's happening here.
Question: Can anyone explain the observed behaviour or at least point me in the right direction?
C - Calling Function
void floatTest()
{
    float floatValC = 42.42f;
    double doubleValC = 42.42;
    //even if passing the address, behaviour is same as all others.
    float retFloat = 42.42f;
    double retDouble = 42.42;
    int sizeOfFloatC = sizeof(float);
    int sizeOfDoubleC = sizeof(double);
    floatTestCPP(floatValC, doubleValC, &retFloat, &retDouble);
    //do some dummy math to make compiler happy (i.e. no unsused variable warnings)
    sizeOfFloatC = sizeOfFloatC + sizeOfDoubleC;//break point here
}
C++/CLI Header
DLL_EXPORT void floatTestCPP(float floatVal, double doubleVal, 
      float *floatRet, double *doubleRet);
C++/CLI Source
//as you can see, there are no managed types in this function
void floatTestCPP(float floatVal, double doubleVal, float *floatRet, double *doubleRet)
{
    float floatLocal = floatVal;
    double doubleLocal = doubleVal;
    int sizeOfFloatCPP = sizeof(float);
    int sizeOfDoubleCPP = sizeof(double);
    *floatRet = 42.42f;
    *doubleRet = 42.42;
    //do some dummy math to make compiler happy (no warnings)
    floatLocal = (float)doubleLocal;//break point here
    sizeOfDoubleCPP = sizeOfFloatCPP;
}
Debugger in C - break point on last line of floatTest()
Debugger in C++/CLI - break point on the second to last line of floatTestCPP()


 
    