As described by U12-Forward, melting a dataframe primarily means reshaping the data from wide form to long form. More often than not, the new dataframe will have more rows and fewer columns compared to the original dataframe.
There are different scenarios when it comes to melting—all column labels could be melted into a single column, or multiple columns; some parts of the column labels could be retained as headers, while the rest are collated into a column, and so on. This answer shows how to melt a pandas dataframe, using pd.stack, pd.melt, pd.wide_to_long and pivot_longer from pyjanitor (I am a contributor to the pyjanitor library). The examples won't be exhaustive, but hopefully should point you in the right direction when it comes to reshaping dataframes from wide to long form.
Sample Data
df = pd.DataFrame(
    {'Sepal.Length': [5.1, 5.9],
     'Sepal.Width': [3.5, 3.0],
     'Petal.Length': [1.4, 5.1],
     'Petal.Width': [0.2, 1.8],
     'Species': ['setosa', 'virginica']}
    )
df
   Sepal.Length  Sepal.Width  Petal.Length  Petal.Width    Species
0           5.1          3.5           1.4          0.2     setosa
1           5.9          3.0           5.1          1.8  virginica
Scenario 1 - Melt all columns:
In this case, we wish to convert all the specified column headers into rows - this can be done with pd.melt or pd.stack, and the solutions to problem 1 already cover this. The reshaping can also be done with pivot_longer
# pip install pyjanitor
import janitor
df.pivot_longer(index = 'Species')
     Species      variable  value
0     setosa  Sepal.Length    5.1
1  virginica  Sepal.Length    5.9
2     setosa   Sepal.Width    3.5
3  virginica   Sepal.Width    3.0
4     setosa  Petal.Length    1.4
5  virginica  Petal.Length    5.1
6     setosa   Petal.Width    0.2
7  virginica   Petal.Width    1.8
Just like in pd.melt, you can rename the variable and value column, by passing arguments to names_to and values_to parameters:
df.pivot_longer(index = 'Species',
                names_to = 'dimension',
                values_to = 'measurement_in_cm')
     Species     dimension  measurement_in_cm
0     setosa  Sepal.Length                5.1
1  virginica  Sepal.Length                5.9
2     setosa   Sepal.Width                3.5
3  virginica   Sepal.Width                3.0
4     setosa  Petal.Length                1.4
5  virginica  Petal.Length                5.1
6     setosa   Petal.Width                0.2
7  virginica   Petal.Width                1.8
You can also retain the original index, and keep the dataframe based on order of appearance:
df.pivot_longer(index = 'Species',
                names_to = 'dimension',
                values_to = 'measurement_in_cm',
                ignore_index = False,
                sort_by_appearance=True)
     Species     dimension  measurement_in_cm
0     setosa  Sepal.Length                5.1
0     setosa   Sepal.Width                3.5
0     setosa  Petal.Length                1.4
0     setosa   Petal.Width                0.2
1  virginica  Sepal.Length                5.9
1  virginica   Sepal.Width                3.0
1  virginica  Petal.Length                5.1
1  virginica   Petal.Width                1.8
By default, the values in names_to are strings; they can be converted to other data types via the names_transform parameter - this can be helpful/performant for large dataframes, as it is generally more efficient compared to converting the data types after the reshaping.
out = df.pivot_longer(index = 'Species',
                      names_to = 'dimension',
                      values_to = 'measurement_in_cm',
                      ignore_index = False,
                      sort_by_appearance=True,
                      names_transform = 'category')
out.dtypes
Species                object
dimension            category
measurement_in_cm     float64
dtype: object
Scenario 2 - Melt column labels into multiple columns:
So far, we've melted our data into single columns, one for the column names and one for the values. However, there might be scenarios where we wish to split the column labels into different columns, or even the values into different columns. Continuing with our sample data, we could prefer to have sepal and petal under a part column, while length and width are into a dimension column:
- Via - pd.melt- The separation is done after the melt:
 - out = df.melt(id_vars = 'Species')
arr = out.variable.str.split('.')
(out
.assign(part = arr.str[0],
        dimension = arr.str[1])
.drop(columns = 'variable')
)
 -      Species  value   part dimension
0     setosa    5.1  Sepal    Length
1  virginica    5.9  Sepal    Length
2     setosa    3.5  Sepal     Width
3  virginica    3.0  Sepal     Width
4     setosa    1.4  Petal    Length
5  virginica    5.1  Petal    Length
6     setosa    0.2  Petal     Width
7  virginica    1.8  Petal     Width
 
- Via - pd.stack- offers a more efficient way of splitting the columns; the split is done on the columns, meaning less number of rows to deal with, meaning potentially faster outcome, as the data size increases:
 - out = df.set_index('Species')
# This returns a MultiIndex
out.columns = out.columns.str.split('.', expand = True)
new_names = ['part', 'dimension']
out.columns.names = new_names
out.stack(new_names).rename('value').reset_index()
 -      Species   part dimension  value
0     setosa  Petal    Length    1.4
1     setosa  Petal     Width    0.2
2     setosa  Sepal    Length    5.1
3     setosa  Sepal     Width    3.5
4  virginica  Petal    Length    5.1
5  virginica  Petal     Width    1.8
6  virginica  Sepal    Length    5.9
7  virginica  Sepal     Width    3.0
 
- Via - pivot_longer- The key thing to note about- pivot_longeris that it looks for patterns. The column labels are separated by a dot- .. Simply pass a list/tuple of new names to- names_to, and pass a separator to- names_sep(under the hood it just uses- pd.str.split):
 - df.pivot_longer(index = 'Species',
                names_to = ('part', 'dimension'),
                names_sep='.')
 -      Species   part dimension  value
0     setosa  Sepal    Length    5.1
1  virginica  Sepal    Length    5.9
2     setosa  Sepal     Width    3.5
3  virginica  Sepal     Width    3.0
4     setosa  Petal    Length    1.4
5  virginica  Petal    Length    5.1
6     setosa  Petal     Width    0.2
7  virginica  Petal     Width    1.8
 
So far, we've seen how melt, stack and pivot_longer can split the column labels into multiple new columns, as long as there is a defined separator. What if there isn't a clearly defined separator, like in the dataframe below?
# https://github.com/tidyverse/tidyr/blob/main/data-raw/who.csv
who = pd.DataFrame({'id': [1], 'new_sp_m5564': [2], 'newrel_f65': [3]})
who
   id  new_sp_m5564  newrel_f65
0   1             2           3
In the second column, we have multiple _, compared to the third column which has just one _. The goal here is to split the column labels into individual columns (sp & rel to diagnosis column, m & f to gender column, the numbers to age column). One option is to extract the column sub labels via a regex.
- Via - pd.melt- again with- pd.melt, the reshaping occurs after the melt:
 - out = who.melt('id')
regex = r"new_?(?P<diagnosis>.+)_(?P<gender>.)(?P<age>\d+)"
new_df = out.variable.str.extract(regex)
# pd.concat can be used here instead
out.drop(columns='variable').assign(**new_df)
 -    id  value diagnosis gender   age
0   1      2        sp      m  5564
1   1      3       rel      f    65
 - Note how the extracts occurred for the regex in groups (the one in parentheses). 
- Via - pd.stack- just like in the previous example, the split is done on the columns, offering more in terms of efficiency:
 - out = who.set_index('id')
regex = r"new_?(.+)_(.)(\d+)"
new_names = ['diagnosis', 'age', 'gender']
# Returns a dataframe
new_cols = out.columns.str.extract(regex)
new_cols.columns = new_names
new_cols = pd.MultiIndex.from_frame(new_cols)
out.columns = new_cols
out.stack(new_names).rename('value').reset_index()
 -    id diagnosis age gender  value
0   1       rel   f     65    3.0
1   1        sp   m   5564    2.0
 - Again, the extracts occur for the regex in groups. 
- Via - pivot_longer- again we know the pattern, and the new column names, we simply pass those to the function, this time we use- names_pattern, since we are dealing with a regex. The extracts will match the regular expression in the groups (the ones in parentheses):
 - regex = r"new_?(.+)_(.)(\d+)"
new_names = ['diagnosis', 'age', 'gender']
who.pivot_longer(index = 'id',
                 names_to = new_names,
                 names_pattern = regex)
 -    id diagnosis age gender  value
0   1        sp   m   5564      2
1   1       rel   f     65      3
 
Scenario 3 - Melt column labels and values into multiple columns:
What if we wish to split the values into multiple columns as well? Let's use a fairly popular question on SO:
df = pd.DataFrame({'City': ['Houston', 'Austin', 'Hoover'],
                   'State': ['Texas', 'Texas', 'Alabama'],
                   'Name':['Aria', 'Penelope', 'Niko'],
                   'Mango':[4, 10, 90],
                   'Orange': [10, 8, 14],
                   'Watermelon':[40, 99, 43],
                   'Gin':[16, 200, 34],
                   'Vodka':[20, 33, 18]},
                 columns=['City', 'State', 'Name', 'Mango', 'Orange', 'Watermelon', 'Gin', 'Vodka'])
df
      City    State      Name  Mango  Orange  Watermelon  Gin  Vodka
0  Houston    Texas      Aria      4      10          40   16     20
1   Austin    Texas  Penelope     10       8          99  200     33
2   Hoover  Alabama      Niko     90      14          43   34     18
The goal is to collate Mango, Orange, and Watermelon into a fruits column, Gin and Vodka into a Drinks column, and collate the respective values into Pounds and Ounces respectively.
- Via - pd.melt- I am copying the excellent solution verbatim:
 - df1 = df.melt(id_vars=['City', 'State'],
              value_vars=['Mango', 'Orange', 'Watermelon'],
              var_name='Fruit', value_name='Pounds')
df2 = df.melt(id_vars=['City', 'State'],
              value_vars=['Gin', 'Vodka'],
              var_name='Drink', value_name='Ounces')
df1 = df1.set_index(['City', 'State', df1.groupby(['City', 'State']).cumcount()])
df2 = df2.set_index(['City', 'State', df2.groupby(['City', 'State']).cumcount()])
df3 = (pd.concat([df1, df2],axis=1)
         .sort_index(level=2)
         .reset_index(level=2, drop=True)
         .reset_index())
print (df3)
 -       City    State       Fruit  Pounds  Drink  Ounces
0   Austin    Texas       Mango      10    Gin   200.0
1   Hoover  Alabama       Mango      90    Gin    34.0
2  Houston    Texas       Mango       4    Gin    16.0
3   Austin    Texas      Orange       8  Vodka    33.0
4   Hoover  Alabama      Orange      14  Vodka    18.0
5  Houston    Texas      Orange      10  Vodka    20.0
6   Austin    Texas  Watermelon      99    NaN     NaN
7   Hoover  Alabama  Watermelon      43    NaN     NaN
8  Houston    Texas  Watermelon      40    NaN     NaN
 
- Via - pd.stack- I can't think of a solution via stack, so I'll skip
 
- Via - pivot_longer- The reshape can be efficiently done by passing the list of names to- names_toand- values_to, and pass a list of regular expressions to- names_pattern- when splitting values into multiple columns, a list of regex to- names_patternis required:
 - df.pivot_longer(
    index=["City", "State"],
    column_names=slice("Mango", "Vodka"),
    names_to=("Fruit", "Drink"),
    values_to=("Pounds", "Ounces"),
   names_pattern=[r"M|O|W", r"G|V"],
   )
 -       City    State       Fruit  Pounds  Drink  Ounces
0  Houston    Texas       Mango       4    Gin    16.0
1   Austin    Texas       Mango      10    Gin   200.0
2   Hoover  Alabama       Mango      90    Gin    34.0
3  Houston    Texas      Orange      10  Vodka    20.0
4   Austin    Texas      Orange       8  Vodka    33.0
5   Hoover  Alabama      Orange      14  Vodka    18.0
6  Houston    Texas  Watermelon      40   None     NaN
7   Austin    Texas  Watermelon      99   None     NaN
8   Hoover  Alabama  Watermelon      43   None     NaN
 
The efficiency is even more as the dataframe size increases.
Scenario 4 - Group similar columns together:
Extending the concept of melting into multiple columns, let's say we wish to group similar columns together. We do not care about retaining the column labels, just combining the values of similar columns into new columns.
df = pd.DataFrame({'x_1_mean': [10],
                   'x_2_mean': [20],
                   'y_1_mean': [30],
                   'y_2_mean': [40],
                   'unit': [50]})
df
   x_1_mean  x_2_mean  y_1_mean  y_2_mean  unit
0        10        20        30        40    50
For the code above, we wish to combine similar columns (columns that start with the same letter) into new unique columns - all x* columns will be lumped under x_mean, while all y* columns will be collated under y_mean. We are not saving the column labels, we are only interested in the values of these columns:
- Via pd.melt - one possible way via melt is to run it via groupby on the columns: - out = df.set_index('unit')
grouped = out.columns.str.split('_\d_').str.join('')
# group on the split
grouped = out.groupby(grouped, axis = 1)
# iterate, melt individually, and recombine to get a new dataframe
out = {key : frame.melt(ignore_index = False).value
       for key, frame in grouped}
pd.DataFrame(out).reset_index()
 -    unit  xmean  ymean
0    50     10     30
1    50     20     40
 
- Via pd.stack - Here we split the columns and build a MultiIndex: - out = df.set_index('unit')
split = out.columns.str.split('_(\d)_')
split = [(f"{first}{last}", middle)
          for first, middle, last
          in split]
out.columns = pd.MultiIndex.from_tuples(split)
out.stack(-1).droplevel(-1).reset_index()
 -    unit  xmean  ymean
0    50     10     30
1    50     20     40
 
- Via pd.wide_to_long - Here we reorder the sub labels - move the numbers to the end of the columns: - out = df.set_index('unit')
out.columns = [f"{first}{last}_{middle}"
               for first, middle, last
               in out.columns.str.split('_(\d)_')]
(pd
.wide_to_long(
    out.reset_index(),
    stubnames = ['xmean', 'ymean'],
    i = 'unit',
    j = 'num',
    sep = '_')
.droplevel(-1)
.reset_index()
)
 -    unit  xmean  ymean
0    50     10     30
1    50     20     40
 
- Via pivot_longer - Again, with - pivot_longer, it is all about the patterns. Simply pass a list of new column names to- names_to, and the corresponding regular expressions to- names_pattern:
 - df.pivot_longer(index = 'unit',
                names_to = ['xmean', 'ymean'],
                names_pattern = ['x', 'y']
                )
 -    unit  xmean  ymean
0    50     10     30
1    50     20     40
 
Note that with this pattern it is on a first come first serve basis - if the column order was flipped, pivot_longer would give a different output. Lets see this in action:
# reorder the columns in a different form:
df = df.loc[:, ['x_1_mean', 'x_2_mean', 'y_2_mean', 'y_1_mean', 'unit']]
df
   x_1_mean  x_2_mean  y_2_mean  y_1_mean  unit
0        10        20        40        30    50
Because the order has changed, x_1_mean will be paired with y_2_mean, because that is the first y column it sees, while x_2_mean gets paired with y_1_mean:
df.pivot_longer(index = 'unit',
                names_to = ['xmean', 'ymean'],
                names_pattern = ['x', 'y']
                )
   unit  xmean  ymean
0    50     10     40
1    50     20     30
Note the difference in the output compared to the previous run. This is something to note when using names_pattern with a sequence. Order matters.
Scenario 5 - Retain part of the column names as headers:
This might probably be one of the biggest use cases when reshaping to long form. Some parts of the column label we may wish to keep as header, and move the remaining columns to new columns (or even ignore them).
Let's revisit our iris dataframe:
df = pd.DataFrame(
    {'Sepal.Length': [5.1, 5.9],
     'Sepal.Width': [3.5, 3.0],
     'Petal.Length': [1.4, 5.1],
     'Petal.Width': [0.2, 1.8],
     'Species': ['setosa', 'virginica']}
    )
df
   Sepal.Length  Sepal.Width  Petal.Length  Petal.Width    Species
0           5.1          3.5           1.4          0.2     setosa
1           5.9          3.0           5.1          1.8  virginica
Our goal here is to keep Sepal, Petal as column names, and the rest (Length, Width) are collated into a dimension column:
- Via pd.melt - A pivot is used after melting into long form: - out = df.melt(id_vars = 'Species')
arr = out.variable.str.split('.')
(out
.assign(part = arr.str[0],
        dimension = arr.str[1])
.pivot(['Species', 'dimension'], 'part', 'value')
.rename_axis(columns = None)
.reset_index()
)
 -      Species dimension  Petal  Sepal
0     setosa    Length    1.4    5.1
1     setosa     Width    0.2    3.5
2  virginica    Length    5.1    5.9
3  virginica     Width    1.8    3.0
 - This is not as efficient as other options below, as this involves wide to long, then long to wide, this might have poor performance on large enough dataframe. 
- Via pd.stack - This offers more efficiency as most of the reshaping is on the columns - less is more. - out = df.set_index('Species')
out.columns = out.columns.str.split('.', expand = True)
out.columns.names = [None, 'dimension']
out.stack('dimension').reset_index()
 -      Species dimension  Petal  Sepal
0     setosa    Length    1.4    5.1
1     setosa     Width    0.2    3.5
2  virginica    Length    5.1    5.9
3  virginica     Width    1.8    3.0
 
- Via pd.wide_to_long - Straightforward - simply pass in the relevant arguments: - (pd
.wide_to_long(
    df,
    stubnames=['Sepal', 'Petal'],
    i = 'Species',
    j = 'dimension',
    sep='.',
    suffix='.+')
.reset_index()
)
 -      Species dimension  Sepal  Petal
0     setosa    Length    5.1    1.4
1  virginica    Length    5.9    5.1
2     setosa     Width    3.5    0.2
3  virginica     Width    3.0    1.8
 - As the data size increases, - pd.wide_to_longmight not be as efficient.
 
- Via pivot_longer: Again, back to patterns. Since we are keeping a part of the column as header, we use - .valueas a placeholder. The function sees the- .valueand knows that that sub label has to remain as a header. The split in the columns can either be by- names_sepor- names_pattern. In this case, it is simpler to use- names_sep:
 - df.pivot_longer(index = 'Species',
                names_to = ('.value', 'dimension'),
                names_sep = '.')
 -      Species dimension  Sepal  Petal
0     setosa    Length    5.1    1.4
1  virginica    Length    5.9    5.1
2     setosa     Width    3.5    0.2
3  virginica     Width    3.0    1.8
 - When the column is split with - ., we have- Petal, Length. When compared with- ('.value', 'dimension'),- Petalis associated with- .value, while- Lengthis associated with- dimension.- Petalstays as a column header, while- Lengthis lumped into the- dimensioncolumn. We didn't need to be explicit about the column name, we just use- .valueand let the function do the heavy work. This way, if you have lots of columns, you don't need to work out what the columns to stay as headers should be, as long as you have the right pattern via- names_sepor- names_pattern.
 - What if we want the - Length/- Widthas column names instead, and- Petal/Sepalget lumped into a- partcolumn:
 
- Via pd.melt - out = df.melt(id_vars = 'Species')
arr = out.variable.str.split('.')
(out
.assign(part = arr.str[0],
        dimension = arr.str[1])
.pivot(['Species', 'part'], 'dimension', 'value')
.rename_axis(columns = None)
.reset_index()
)
 -      Species   part  Length  Width
0     setosa  Petal     1.4    0.2
1     setosa  Sepal     5.1    3.5
2  virginica  Petal     5.1    1.8
3  virginica  Sepal     5.9    3.0
 
- Via pd.stack: - out = df.set_index('Species')
out.columns = out.columns.str.split('.', expand = True)
out.columns.names = ['part', None]
out.stack('part').reset_index()
 -      Species   part  Length  Width
0     setosa  Petal     1.4    0.2
1     setosa  Sepal     5.1    3.5
2  virginica  Petal     5.1    1.8
3  virginica  Sepal     5.9    3.0
 
- Via pd.wide_to_long - First, we need to reorder the columns, such that - Length/- Widthare at the front:
 - out = df.set_index('Species')
out.columns = out.columns.str.split('.').str[::-1].str.join('.')
(pd
.wide_to_long(
    out.reset_index(),
    stubnames=['Length', 'Width'],
    i = 'Species',
    j = 'part',
    sep='.',
    suffix='.+')
.reset_index()
)
 -      Species   part  Length  Width
0     setosa  Sepal     5.1    3.5
1  virginica  Sepal     5.9    3.0
2     setosa  Petal     1.4    0.2
3  virginica  Petal     5.1    1.8
 
- Via pivot_longer: - df.pivot_longer(index = 'Species',
                names_to = ('part', '.value'),
                names_sep = '.')
 -      Species   part  Length  Width
0     setosa  Sepal     5.1    3.5
1  virginica  Sepal     5.9    3.0
2     setosa  Petal     1.4    0.2
3  virginica  Petal     5.1    1.8
 - Notice that we did not have to do any column reordering (there are scenarios where column reordering is unavoidable), the function simply paired - .valuewith whatever the split from- names_sepgave and outputted the reshaped dataframe. You can even use multiple- .valuewhere applicable. Let's revisit an earlier dataframe:
 - df = pd.DataFrame({'x_1_mean': [10],
                   'x_2_mean': [20],
                   'y_1_mean': [30],
                   'y_2_mean': [40],
                   'unit': [50]})
df
 -    x_1_mean  x_2_mean  y_1_mean  y_2_mean  unit
0        10        20        30        40    50
 - df.pivot_longer(index = 'unit',
                names_to = ('.value', '.value'),
                names_pattern = r"(.).+(mean)")
 -    unit  xmean  ymean
0    50     10     30
1    50     20     40
 
It is all about seeing the patterns and taking advantage of them. pivot_longer just offers efficient and performant abstractions over common reshaping scenarios - under the hood it is just Pandas, NumPy, and Python.
Hopefully, the various answers point you in the right direction when you need to reshape from wide to long.