divisor

See also: Divisor

English

PIE word
*dwóh₁

Pronunciation

  • (UK) IPA(key): /dɪˈvaɪ.zə(ɹ)/
  • (US) enPR: dĭ-vīʹ-zər, IPA(key): /dɪˈvaɪ.zɚ/
  • Audio (US):(file)
  • Rhymes: -aɪzə(ɹ)

Noun

divisor (plural divisors)

  1. (arithmetic) In an expression involving division, the number by which another number is being divided.
    In "42 ÷ 3" the divisor is the 3.
  2. An integer that divides another integer an integral number of times, the former being called a divisor of the latter.
    10 is a divisor of 100, but not of 101.
    The positive divisors of 6 are 1, 2, 3 and 6.
    1. (algebra, more generally) A ring element which can be multiplied (by some other ring element) to yield a third ring element, the first being called a divisor of the third. If the ring is noncommutative, then one specifies whether a divisor is left, right, or two-sided.
  3. (mathematics, algebraic geometry) Any of several kinds of formal object associated to an algebraic variety, scheme, etc., which play a role similar to that of homology or cohomology groups in the study of topological spaces.
    1. (in the study of Riemann surfaces) An element of the free abelian group on the points of the space.
    2. (on a variety (or integral locally Noetherian scheme)) A Weil divisor: an element of the free abelian group on the codimension-1 subvarieties (or subschemes).
    3. (on a variety (or integral Noetherian scheme)) A Cartier divisor; see Cartier divisors on Wikipedia.Wikipedia

Derived terms

Translations

See also

Other terms used in arithmetic operations:

Advanced hyperoperations: tetration, pentation, hexation

Anagrams

Catalan

Etymology

Borrowed from Latin dīvīsōrem.

Pronunciation

Noun

divisor m (plural divisors)

  1. (arithmetic) divisor (number that another is to be divided by)

Further reading

Danish

Noun

divisor c (singular definite divisoren, plural indefinite divisorer)

  1. (number theory) divisor

Declension

Declension of divisor
common
gender
singular plural
indefinite definite indefinite definite
nominative divisor divisoren divisorer divisorerne
genitive divisors divisorens divisorers divisorernes

Latin

Pronunciation

Noun

dīvīsor m (genitive dīvīsōris); third declension

  1. divider
  2. distributor (especially of bribes)

Declension

Third-declension noun.

Descendants

  • Catalan: divisor
  • French: diviseur
  • Galician: divisor
  • Italian: divisore
  • Occitan: divisor
  • Portuguese: divisor
  • Spanish: divisor

References

  • divisor”, in Charlton T. Lewis and Charles Short (1879) A Latin Dictionary, Oxford: Clarendon Press
  • divisor”, in Charlton T. Lewis (1891) An Elementary Latin Dictionary, New York: Harper & Brothers
  • "divisor", in Charles du Fresne du Cange’s Glossarium Mediæ et Infimæ Latinitatis (augmented edition with additions by D. P. Carpenterius, Adelungius and others, edited by Léopold Favre, 1883–1887)
  • divisor in Gaffiot, Félix (1934) Dictionnaire illustré latin-français, Hachette.
  • divisor”, in Harry Thurston Peck, editor (1898), Harper’s Dictionary of Classical Antiquities, New York: Harper & Brothers
  • divisor”, in William Smith et al., editor (1890), A Dictionary of Greek and Roman Antiquities, London: William Wayte. G. E. Marindin

Portuguese

Etymology

Borrowed from Latin dīvīsōrem.

Pronunciation

 
  • (Brazil) IPA(key): /d͡ʒi.viˈzoʁ/ [d͡ʒi.viˈzoh]
    • (São Paulo) IPA(key): /d͡ʒi.viˈzoɾ/
    • (Rio de Janeiro) IPA(key): /d͡ʒi.viˈzoʁ/ [d͡ʒi.viˈzoχ]
    • (Southern Brazil) IPA(key): /d͡ʒi.viˈzoɻ/
 
  • (Portugal) IPA(key): /di.viˈzoɾ/
    • (Northern Portugal) IPA(key): /di.biˈzoɾ/ [di.βiˈzoɾ]
    • (Southern Portugal) IPA(key): /di.viˈzo.ɾi/

  • Hyphenation: di‧vi‧sor

Noun

divisor m (plural divisores)

  1. (arithmetic) divisor

Spanish

Etymology

From Latin divisor.

Pronunciation

  • IPA(key): /dibiˈsoɾ/ [d̪i.β̞iˈsoɾ]
  • Rhymes: -oɾ
  • Syllabification: di‧vi‧sor

Adjective

divisor (feminine divisora, masculine plural divisores, feminine plural divisoras)

  1. dividing

Noun

divisor m (plural divisores)

  1. (arithmetic) divisor (number that another is to be divided by)

Derived terms

Further reading